
782 T H E  C R Y S T A L  S T R U C T U R E  OF R E A L G A R  

BOZORTH, R. 1~. (1923). J. Amer. Chem. Soc. 45, 1621. 
BUERGER, M.J .  (1935). Amer. Min. 20, 36. 
BURB~-K, R.D.  (1951). Acta Cryst. 4, 143. 
COCH~A_~, W. (1948). Acta Cryst. 1, 138. 
FRUEH, A.J .  (1951). Amer. Min. 36, 833. 
Grr.x.IS, J. (1948). Acta Cryst. 1, 174. 
HA~KER, D. (1948). Amer. Min. 33, 764. 
HXRKER, D. & KASPER, J. S. (1948). Acta C ryst. 1, 70. 

ITO, T. (1937). Beitr. Min. Japan. N.F. 2, 6. 
!TO, T. (1950). X-ray Studies on Polymorphism. Tokyo: 

Maruzen. 
Lu, C.S. & DONOHUE, J. (1944). J. Amer. Chem. Soc. 

66, 818. 
PAULr~G, L. (1940). The Nature of the Chemical Bond. 

Ithaca: Cornell University Press. 

Acta Cryst. (1952). 5,782 

The Interpretation of Electron-Diffraction Patterns from One-Degree-Orientated 
Polycrystalline Deposits and Rotated Crystals 

BY H. WILMAN 

Applied Physical Chemistry Laboratories, Imperial  College, London S .W.  7, Eng/and 

(Received 8 April 1952) 

Effective practical methods are developed for interpreting electron-diffraction patterns from 
one-degree-orientated polycrystalline deposits or rotating crystals, to determine their orientation, 
and their lattice form where this is not known previously. These methods apply to crystals of any 
symmetry; all apply to the case where the orientation axis is normal to the electron beam or nearly 
so, while some are of quite general application. 

1. Introduction and general basis 

Thin polycrystalline films of many materials are now 
much used in research and industry, and their pro- 
perties depend much on structural characteristics such 
as crystal size, orientation, habit  and purity. Many 
electron-diffraction investigations have shown tha t  in 
such deposits formed under certain conditions on 
epitaxially inert substrates the crystals tend to grow 
in a 'one-degree' orientation, i.e. with a certain type 
of lattice row [UVW] in common but otherwise with 
random disposition about this common axis. The 
deposit then yields an electron-diffraction pat tern 
approximating to tha t  which would be obtained by 
rotating a single crystal round the [U V W] lattice row 
placed parallel to the orientation axis. The inter- 
pretation of such patterns obtained with fast electrons 
is now discussed, and an experimental s tudy (Evans 
& Wilman, 1952) has also led to a clearer under- 
standing of the causes and nature of preferred orienta- 
tion in deposits condensed from the vapour. 

The method of interpretation of such patterns first 
proposed by Kirchner (1932) (cf. also Thomson, Stuart  
& Murison, 1933; Nelson, 1937; and Thomson & 
Cochrane, 1939) is unduly laborious. A simpler Laue- 
zone method has been described (Finch & Wilman, 
1937a, b) by which the theoretical pat tern expected 
from the crystals in any suggested one-degree orienta- 
tion can be constructed more easily for comparison 
with the recorded pattern. The present work describes 
a new generalized extension of this method which 
makes it easily applied to all types of lattice, and 

further new methods which have proved useful in 
recent studies of orientation in deposits formed 
chemically (Goswami, 1950) or by condensation from 
the vapour (Evans, 1950; Evans & Wilman, 1952). 

Single-crystal rotation patterns and also often one- 
degree-orientation patterns have, as in X-ray dif- 
fraction work, an important  application for deter- 
mining the lattice form and dimensions where these 
are not known initially, hence methods suitable for 
this purpose are also developed below for the case of 
patterns where the diffractions lie on elliptic or hyper- 
bolic loci (see Finch & Wilman, 1936b, 1937a, b; 
Uyeda, 1938; Goehe & Wilman, 1939). In the simpler 
case of patterns in which well-defined ' layer lines' 
(and often also 'row lines') occur, the methods de- 
scribed for analysis of the analogous X-ray pat terns 
by Buerger (1942), Bunn (1945) and Henry, Lipson & 
Wooster (1951) are readily adapted and need not be 
discussed further here. 

In polycrystalline deposits the criterion for one- 
degree orientation is (in reflexion patterns) tha t  the 
diffraction pat tern is unchanged as the azimuth of the 
electron beam round the orientation axis is varied, or 
(in transmission) tha t  only a ring pat tern is obtained 
when the beam is along the orientation axis, although 
the rings break up into arcs and arcs also appear on 
other ring positions on inclining the specimen (Thom- 
son, 1930; Finch & Quarrell, 1933a, b). In certain 
cases the axis of one-degree orientation can be oblique 
to the substrate (Burgers & Dippel, 1934; Burgers & 
Ploos van Amstel, 1936; Beeching, 1936; Nelson, 
1937; Schulz, 1949; Evans & Wilman, 1952). 
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Fig. 1. Layer-line pa t t e rn  f rom silver n i t ra te ,  showing high perfect ion of or ienta t ion somet imes  obta ined  in deposits  formed on 
substrates  which are atomical ly highly smooth ,  in this case smooth  (111) faces of silver crystals on a muscovi te  mica cleavage face. 

Fig. 2 (a). Arc pa t t e rn  from {1122}-orien- 
t a t ed  zinc condensed on a rocksal t  
cleavage face. 
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Fig. 3. Arcs on elliptic loci from (0001)-orientated CdI2; or ientat ion 
axis inclined to bcam (its project ion is vertical in Fig. 3). 

Fig. 4. Hyperbolic  loci of diffraction groups from a single MoS 2 crystal  ro ta ted  
about  an axis normal  to beam (its project ion is vertical in Fig. 4). 
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Although the crystals often tend to grow initially 
• on the substrate with a more or less densely-populated 
net plane (HKL) parallel to the substrate (cf. however 
the 'outward growth' type of orientation in electro- 
deposits, with a densely-populated lattice row normal 
to the substrate (Finch, Wilman & Yang, 1948)), 
usually there is some spread from the mean due to 
substrate roughness and other causes (see Evans & 
Wilman, 1952). The pat tern then consists of arcs 
(Fig. 2(a)) instead of spots (Fig. 1). The H K L  dif- 
fraction and its higher orders are centred on the plane 
of incidence and correspond to the Bragg reflexions 
from the plane (HKL), thus the radial distance of 
this diffraction from the undeflected-beam spot often 
gives direct identification of the indices of this plane 
which is normal to the orientation axis. If the arcs 
are unduly long, or if there is no simple diffraction on 
the plane of incidence, other diffraction positions have 
to be used to indicate the mean orientation, followed 
by detailed check of all the diffraction positions. The 
length of, and intensity distribution along, the H K L  
are or its higher orders gives directly the extent and 
nature of the spread of orientation from the mean 
(HKL) orientation. 

2. New m e t h o d s  of i n t e rp re t a t i on  

2.1. The generalized Laue-zone method of interpretation 
If the lattice translation, T, along the orientation 

axis has indices [UVW] and has normal to it the 
plane (HKL), which usually lies parallel to the sub- 
strate, the explicit expressions for U, V, W, in terms 
of H, K , L  (hitherto apparently lacking in the 
literature) are simply derived as follows: 

T Ua + Vb + Wc * : = rHxz. TdH~z, 

r*KL = Ha* + K b *  + L c *  ----- (r*KL. a*)a + (r*KL. b*)b 
+( r*~L.  c*)c, 

whence 

U" V" W = r~Kz .a* - r~Kz .b* : r~xz .c*  (1) 

=(1/a){(H/a) sin 2 a t  (K/b) (cos a cos fl--cos y) 
+(L/c) (cos ~, cos a--cos/5)}" 

(1/b)((H/a) (cos a cos/5--cos r)+(K/b)  sin 2 fl 
+ (L/c) (cos /s cos :~,--cos a) } : (2) 

(1/c){(H/a) (cos r cos a--cos/5) 
+(K/b) (cos/5 cos ~,--cos a)+(L/c) sin e ~}.  

Conversely, the indices (HKL) of the plane which is 
normal to the lattice row [UVW], so tha t  [HKL]* 
is normal to (UVW)*,  are given by 

H : K : L = ( U a e +  Vab cos :~,+ Wca cos/5):(Uab cos y 
+ Vb2+ Wbc cos a):(Uac cos/5+ Vbc cos a t  Wce). (3) 

Thus, when the type of orientation plane (HKL) is 
more or less clearly indicated, for  example by its 
strong Bragg reflexion arc which usually occurs in 
the plane of incidence of the reflexion pat tern ob- 
tained at grazing incidence of the electron beam on 

the deposit, then the following procedure may  be used 
to test this conclusion. First  from the expression (2) 
convenient values U, V, W (not necessarily integers) 
are obtained defining the normal to (HKL); then the 
practically straight and equidistant Laue zones ('layer 
lines') of constant Laue index h' relative to the corre- 
sponding vector Tuv  W can be drawn normal to the 
projection of Tvv  W on the plate, at convenient inter- 
vals on a diagram showing the powder-pattern ring 
positions, as in Fig. 2(b). The h ' th zone is distant 
h'),L/Tu7 W sin ~v from the undeflected-beam spot, to a 
close approximation, when the angle yj between Tuv  W 
and the electron beam is not small. Since, however, 
any diffraction which has Laue indices hkl relative to 
a, b, c has an index h' given by 

h' = h U + k V + l W  (4) 

relative to Tvvw,  the scale of h' on the diagram is 
most conveniently obtained from the radius RHX L 
of the H K L  ring on which the H K L  diffraction lies 
at the point where the hH~Lth zone is tangent  to it, 
for which 

t 

h' = hH1~, = H U + K V + L W .  (5) 

Thus the distance apart  of the zones per unit of h' is 

D1 = RBxL/h~t~z = R n K L / ( H U + K V + L W )  . (6) 

In this way the T v w  v zones can be drawn at h' = 
0, 1, 2, 3, . . .  or desired submultiples of these values, 
whence direct interpolation is easy, to find the point 
where any particular diffraction hkl lies, at the inter- 
section of the hkl ring with the h'th zone defined by (4). 
On any hkl ring account must of course be taken of 
all the diffractions corresponding to the symmetrically 
equivalent planes of form {hkl}. 

For the crystallographic systems of higher symmetry 
than triclinic the expression (2) reduces to the following 
simpler ones" 

Monoclinic: 

U: V: W=(1/a){(H/a)--(L/c)  cos/5} : (1/b){(K/b) 
sin e t5} : (1/c) {--(H/a) cos/5 + (L/c) } .  

Rhombohedral" 

U: V: W = { H ( l + c o s  a ) - - ( K + L )  cos a}: {K(1 +cos  ~) 
- - ( H + L )  cos a}" {L(1 +cos  a) 
- - ( H + K )  cos a } .  

Hexagonal: 
U: V" W=(2H+K) ' (H+2K) : (~ )L / ( c /a )  2 . 

0rthorhombic- 

U" V" W = H / a  ~ :K/b ~ :L/c 2 . 

Tetragonal: 
U: V" W=H:K:L/ (c /a )  e . 

Cubic- 
U ' V ' W - = H : K : L .  

50* 
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2.2. The 'row-line' method 

An independent method, complementary to that  of 
§ 2.1, for determining the positions of the diffractions 
associated with any trial orientation, is to define these, 
near the undeflected beam, as the intersections made 
with the appropriate Hull-Debye-Scherrer  ring po- 
sitions by the loci which are similar to, but LL times 
larger than, the loci traced out on the Ewald 'sphere 
of reflexion' by a set of parallel reciprocal-lattice 
rows during rotation of the lattice round the orienta- 
tion axis. The par t  of the Ewald sphere concerned, 
for fast electrons, is tha t  surrounding the origin, and 
since it  is closely approximated by the tangent plane 
at  the origin this will be referred to below as the 
'Ewald plane'. 

(a) General expressions defining the row.line l o c i . -  
To construct such loci the equations previously derived 
can be used (Finch & Wilman, 1936b, 1937a; Goche 
& Wilman, 1939). In Fig. 5, 0 is the origin of the 

Beam Hyperboloid/ Reciprocal- 
\ - ~  lattice row 

/ I / ~ Rotation 

" -  

Fig. 5. 

reciprocal lattice, ZO is the electron beam, O X Y Z  
are orthogonal and 0 Y is the projection of the rotation 
axis O Y  x on the X Y  plane; 9 - - /  YIOZ, ~ = A  NOY1 

is the angle between the lattice row M/V and 0 Y1, 
and p is the perpendicular ON from 0 to the row 
concerned. During the rotation a row M N  in general 
generates a hyperboloid of revolution as in Fig. 5, 
and intersects the Ewald plane in a point which traces 
out a conic whose centre O' is at 

xc=0;  y , = - - p  cos ~7 sin 9/(cos 2 9- - s in  ~ ~), (8) 

the equation of the conic relative to parallel axes 
O'X', O'Y'  through O' being 

x,2 cos 9 ~+y,2 (cos 2 9 _ s i n  9 ~) 

= ps cos ~ ~[1+ {cos ~ V/(cos ~ 9- - s in  s ~)}]. (9) 

The ratio of the semi-axes A and B, parallel to OX 
and O Y respectively, is 

B/A = cos ~/(cos 2 9- - s in  2 ~)½ . (10) 

If p = 0, or A = 0, the locus is the pair of straight 
lines through 0 or 0 '  respectively, given by 

y'  -- ± x '  cos ~/(sin ~' ~--cos ~ 9)½; (11) 

but  if p # 0 the locus is a hyperbola, parabola or 
ellipse according to whether (sin ~ ~--cos 2 9) is > ,  = 
or < 0, i.e. whether I~1 is > ,  = or  < 1 9 0 ° - 9 1 .  The 
asymptotes of the hyperbola are the lines 

y ' =  i x ' .  cos ~/(sin 2 ~--cos ~ 9)½= ± x ' t a n  9 ,  (12) 

whence sin 9 = cos ~/sin 9 .  (13) 

When the rotation- or orientation axis is normal to 
the electron beam or nearly so, as in reflexions patterns, 
9 ~- 90°, hence ~ ~- 90°--9.  As ~ increases, the hyper- 
bolae become more and more acute until, when 

= 90 °, they reduce to the straight lines normal to 
OY: 

y = p cos ~?/sin W, (14) 

relative to 0 as origin, and extending outwards on 
each side of O Y from the points where x = 
p . [1--(cos  2 ~/sin 2 9)] ½. The rare case of 1~1=190° -91  
gives a parabola; and when ~=0,  and hence ~?=90 °, 
the locus is the ellipse 

(x2/p2)+(Y2/(P*/c°sg 9)) --  1 . (15) 

In terms of the shortest distance s between the row 
and the rotation axis, and the distance q from 0 along 
the rotation axis to the foot of this mutual  perpen- 
dicular, the centre 0 '  of the locus is at  

xc=0;  y c = - - q . s i n  9 sins ~/( cos* 9 - s i n*  ~),  (16) 

and, relative to parallel axes OX', O Y' through 0', 
the equation is 

x'~+y '2 (cos 2 9- - s in  2 ~)/cos 2 

= s2+q ~ c°s~ 9 sin2 ~/( cos2 9 - s in2  ~) • (17) 

A feature of the loci, whether ellipses, hyperbolae or 
lines, is that  the perpendicular p corresponds to 
( - ' -1 /2 / ,×)  the shortest distance (the normal in the 
case of ellipses and hyperbolae) from the undeflected- 
beam spot to the locus. Note, however, tha t  the vertices 
of each hyperbolic locus do not, except when 9 = 9 0  ° , 
correspond to the end-point of s on the row as this 
point crosses the Ewald sphere during the rotation. 

Equation (17) follows from the fact tha t  the re- 
ciprocal-lattice points along each row are regularly 
spaced at T* apart ;  thus throughout the rotation they  
lie on equidistant planes normal to the rotation axis 
and T* cos ~ apart,  intersecting the Ewald plane in 
equidistant lines normal to O Yr  The corresponding 
lines in the pat tern are thus practically equidistant 
when 9 is not too far from 90 °, at D apart  (Fig. 6), 
where 

D "~ 2L. T* cos ~/sin 9 .  (18) 

Also, because the intersections of the equidistant 
planes with the Ewald sphere correspond to some of 
the Laue zones of spacing EL/T sin W associated with 
the crystal-lattice row T which lies along the rotation 
axis, D -"- nXL/T sin 9, where n is some integer. From 
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x I D 
Fig. 6. 

(18) and (13), or from Fig. 6, it follows that  for hy- 
perbolic loci (cf. Fig. 6), whatever ~, we have 

~L. T* ---- D/sin ~ ,  (19a) 

and for elliptic loci, from (10), 

~L.T* = D.(1--(A/B)2)½, (19b) 

whence ~tL. T* can be calculated from the measured 
D and ~ or B/A, and thereby gives identification of 
the reciprocal-lattice row associated with the observed 
loci. 

(b) Elliptic loci.--In most one-degree-orientated 
deposits a densely-populated net plane tends to be 
parallel to the substrate. Thus there is a densely- 
populated reciprocal-lattice row along the orientation 
axis, i.e. normal to the substrate. For rows in this 
direction ~----0 and r] = 90 °, and each row sweeps 
out a cylinder during rotation round the orientation 
axis. When y~ ~ 90 °, as in reflexion patterns, the inter- 
section with the Ewald plane is thus a pair of straight 
lines parallel to 0 Y and distant p from O Y, corre- 
sponding to the 'row lines' of diffractions sometimes 
prominent in X-ray rotating-crystal patterns. In 
transmission, when ~ v .  90 °, the intersection is the 
ellipse of equation (15) with minor axis p along OX 
and major axis p/cos ~v along O Y (Kirchner, 1932; 
Finch & Wilman, 1937a, b). 

If the reciprocal-lattice rows parallel to the orienta- 
tion axis are the most densely populated, the pattern 
thus consists of prominent groups of diffractions 
lying on these elliptic loci as in Fig. 3, all centred at 
the undeflected-beam spot and with axial ratio 
1/cos ~. (The continuous intensity distribution along 
ellipses for which h-}-2k ~= 3n in Fig. 3 is due to 
some irregularity of stacking of the CdI, (0001) layers 
(cf. also for graphite Finch & Wilman, 1936a, and 
for clays Hendricks & Ross, 1938, and Brindley, 
1951)). Fig. 7 indicates how the curvature of the 
Ewald sphere causes a small deviation from the above 
elliptic shape of the loci, with slightly unequal se- 
paration of the arcs in the symmetrical pairs near the 
two ends of the major axis, as seen in Fig. 3. This is 
also apparent from the alternative Laue-zone con- 
struction when these are defined accurately instead 

Fig. 7. 

of by the approximation used in § 2.1, and it allows 
the direction of the orientation axis to be recognised 
uniquely from the pattern. 

If the most densely populated reciprocal-lattice 
rows are not parallel to the orientation axis (~ ~= 0) 
their intersections with the Ewald plane are circles 
when yJ----0, as in the case of ~----0, and similarly 
become ellipses as ~v increases up to 90°--~, but then 
the ellipses have different centres displaced by Yc 
along OY from the origin (cf. equation (8)) though 
their axial ratios B/A are still all equal (cf. equation 
(10)) and their major axes are still along OY. The 
variation of B/A with ~ is shown in Fig. 8 relative 

~ = 8 0  ~ 70 ° 60 ° 50 ° 4.0 ° 30 ° 2001000 ° 

. . . . .  67 

2"0 3 4 

B__ A 
2 

1".5 

~~_ (c°s'~-sin~D 

~Oo0 lO ° 20 ° :/o o 4b o soo 6o o zo ° 

Fig. 8. 

to the magnitude of $. Fig. 8 also indicates the 
magnitude of the factor sin ~v/(cos ~ VJ--sin 2 ~) (at 
points on the B/A curves) in the expression (8) for Yc. 
These characteristics will serve for recognition of such 
displaced elliptic loci when they occur, and for 
estimation of ~ from the B/A observed at suitable 
inclinations v 2 from the normal setting. 

In the most frequent case of ~ = 0 the crystal 
translation T in the rows parallel to the orientation 
axis can be estimated from the spacing of the corre- 
sponding equidistant Laue zones (layer lines) on which 
the diffractions lie (see § 2.1 and Finch & Wilman, 

¢ 
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1937a, b). A more accurate method is to multiply 
the more precisely measurable radii R of the arcs, 
and the semi-minor axis R 0 of the ellipse, by the factor 

3 [R\  9 31[R\  4 
= - '  (20) 

to convert them to 2L/d values, i.e. proportional to 
the reciprocal-lattice vectors, inversely proportional 
to the net-plane spacings d. A base line OP o is then 
constructed (Fig. 9) representing R0(1--(~0) drawn to 
a suitable scale, and, since this is 21, times the perpen- 
dicular p from the origin to the row, at the end of it 
a perpendicular PoP is erected and points P1, P,,  - . .  
are marked off along it, where OPz, O P , , . . .  are 
Rl(1--(Sz),R~.(1--(~9), . . .  to the same scale. Fig. 9 

XL .T *fP' 

P@ Ro(1-(~o) 0 
=ZL.p 

Fig. 9. 

illustrates~ the equidistant series of points so con- 
structed from the arcs in the second ellipse ( l l l  
diffractions) in Fig. 3 from CdI~, which is hexagonal 
with a = 4.24 A, c/a = 3.226. This corresponds to a 
reciprocal-lattice row parallel to the orientation axis, 
and the distance apart of the points, to the scale used, 
is ).L times the period T~xz, i.e. 2L divided by the 
spacing dHKL of the perpendicular planes. The orienta- 
tion axis can thus be identified if the lattice is known. 

The minor axis of the ellipse is not accurately 
measurable when there is no arc at its end, and Fig. 9 
shows how an inaccuracy in its estimation leads to a 
displacement of the successive points P which is 
greatest for those nearest the base line, in a manner 
which allows recognition of the direction of the error 
and location of its true position by trial. Fig. 10 
shows the result when the rows are disposed so that  
the points do not lie on densely populated planes 
normal to the orientation axis, for example with 
(001)-orientated but monoclinic or triclinic clays. In 
special cases this may lead to the apparent point 
spacing in the diagram being a submultiple of the true 
spacing. 

When the lattice is not previously known it can 
be built up from the row-line periodicity obtained as 
above, together with the regular lateral disposition 

C T R O N - D I F F R A C T I O N  P A T T E R N S  

of the rows, which is given by the lengths of the minor 
axes of the elliptic loci. These correspond to the ID 
values, i.e. the radial distances from the origin to the 

P, 

P, 

Fig. 10. 

points in the two-dimensional lattice formed by the 
intersections of the rows with the plane normal to them 
through the origin. The analysis of the data to give 
the axial lengths and angle of this two-dimensional 
lattice is accomplished graphically by trial triangula- 
tions to build up this lattice from three small spacings 
of the group (cf. Bunn, 1945, pp. 177-8). The rows 
normal to this lattice and through the points of it 
bear reciprocal-lattice points at positions determined 
above (Figs. 9 and 10); thus the reciprocal lattice can 
be completely defined, and hence the crystal lattice. 

(c) Hyperbo l ic /oc i . - -When  the rows not parallel to 
the orientation axis are the most densely-populated 
( ~ 0 )  and when ~ is > 90°--~, i.e. (cosg~--sin~) < 1, 
the resulting conspicuous groups of diffractions lie on 
the associated hyperbolic loci, as in Fig. 4 (Finch & 
Wilman, 1936; Uyeda, 1938; Goche & Wilman, 1939). 
The hyperbolae can be constructed from equation (9) 
for any required trial orientation for comparison with 
the pattern, and Fig. 11 gives the inclination of the 

90 '  

8O ° 

70 ° 

T:[ 
4ff  

30 = 

20 ° 

10 ° 

O' 

10 ° 20 ° 30  = "40" 50  ° 60  = 7(7 80 ° 

20 ~ 

10 = 20" 30" 40 ° 50 '  60 '  70 ° 80 ° 9(7 y > 
Fig. 11. 
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asymptotes to the real axis of the hyperbola as a 
function of y~ ior any given 2 value (cf. equation (13)). 

Fig. 2(c) illustrates the application of the loci to 
construct the reflexion pat tern expected from one- 
degree (l122)-orientated zinc crystals (hexagonal, 
c/a .= 1.86) using the [001]* rows which are the 
most densely-populated. Here YJ ~-- 90°, (xc, Yc) is 
(0, pcos  ~/sin 2 2), the vertex is at  [ ± p  { 1 -  
(cos ~ z]/sin 2 2)} ½, 0] and its equation relative to O' is 

Xr2 

r2 ( sin~ 2 -cos~ z])/s in2 2 

y,9 = 1,  (21) 
r 9" cos 2 2 (sin s 2--cos 2 ~)/sin 2 2 

the asymptotes being the lines y ' =  ± x '  cot 2. The 
angle 2 between [112]* and [001]* is t a n - l ( c / a ) =  
61044 ' . For any [001]* row through the point 
[[hk0]]*, r -~ r~:o -~ 1/dhko = {(hg-f-k2 ~-hk). 4/(3a2) } ½, 
and V]hk is the angle between [112]* and [hk0]*. Thus 
cos ~]hk = ½Va.(h÷k){ 1 +(a/c)~}-½{h~A-k~A-hk}-½. The 
centre and vertex can thus be found for the loci traced 
out by all the [001]* rows near the origin, i.e. the 
10/, i01, 01/, 0il, 111, etc. groups of diffractions, and 
the loci constructed as in Fig. 2(c). The intersection 
of a particular h~k~ locus with the various ring 
positions of h~k~l type, where 1 ~-- 0, 1, 2, 3 . . . .  then 
gives the positions of the h~k~l diffractions with these 
l values. 

Hyperbolic loci of diffractions generated by a 
deformational curvature of parts of initially two- 
degree-orientated thin crystalline deposits have been 
described by Goche & Wilman (1939) and by Elleman 
& Wilman (1949), in addition to layer-line groups 
(for which, produced by abrasion of crystals, see 
Evans, Layton & Wilman, 1951). 

When the crystal lattice is not already known it 
can be defined from the pat tern as follows. The first 
step is to draw for each hyperbolic locus a diagram like 
Fig. 9 or 10, using the radial distances R from the 
undeflected-beam spot to the diffractions, and the 
distance R 0 from the undeflected spot to the nearest 
point of the locus. This establishes the common 
reciprocal-lattice period T* along the parallel rows 
which correspond to the loci, and also the perpen- 
dicular distances p from the origin to the rows, 
together with the displacement and sequence of the 
lattice points from the foot of the perpendicular. The 
set of perpendiculars p then give, by trial as described 
above for the case of ellipses, the two-dimensional 
lattice in which the set of rows meet the plane normal 
to them through the origin. With the above data  
already obtained about the lattice-point distribution 
along the rows, the reciprocal lattice can thus be 
completely defined, and when a cell is chosen the 
indices of the rows corresponding to the loci can be 
specified, and also those of the lattice points on them. 

In a transmission pat tern the simplest way of deter- 
mining the indices of the rotation axis is then to apply 

the zone-axis relations to the indices of those points 
on the loci which lie on a line normal to the projection 
of the rotation axis on the plate, i.e. parallel to the 
(real)axes of the hyperbolae. The reciprocal-lattice 
vectors to these points all lie in a plane normal to 
the rotation axis. I t  is also useful to note tha t  2 can 
be calculated from equation (13) using the experiment- 
ally known y~ and ~. 

In a reflexion pat tern this region lies below the 
shadow edge, but  normally the Bragg reflexions from 
the plane which lies normal to the orientation axis 
are then more or less recognizable in the plane of 
incidence, and calculation of the net-plane spacing 
serves for its provisional identification (or use the 
method described in § 2-2(a)). Further  check by the 
positions of the other diffractions then allows reliable 
determination of the orientation axis. In doubtful 
cases the direct calculation of the indices of the 
orientation axis can be a t tempted by the method of 
§ 2-3. In reflexion patterns, since yJ-----90 °, 2 ~ 9 0 ° - - ~ ,  
as noted above. 

2.3. The method of calculating the orientation f rom the 
positions of three arcs, when the orientation axis is 
normal to the beam 

When there is one-degree orientation of not very 
simple type, due to various causes (see Evans & 
Wilman, 1952) the indices [UVW]  of the orientation 
axis, not necessarily expressed as integers in this case, 
or the indices (HKL)  of the net plane which is normal 
to this axis, can in many cases be calculated in the 
following way, provided the orientation is strong 
enough to lead to pat terns of short well-defined arcs. 
The starting point is the expression for the angle s 
between the orientation axis [ U V W] and the reciprocal- 
lattice vector r*kz normal to any plane (hkl)" 

:/$ o 
cos e = (rhkl. Tuvw)/rhkzTvvw 

= ( h U + k V + I W ) . d h k z / T u v  w . (23) 

The angle e is measurable to a close approximation 
in the pat tern as the angle between the radii on which 
the (HKL)  Bragg reflexion and the (hkl) reflexion lie 
respectively. Three such equations obtained from the 
observed positions and indices hlkll 1, h2kel2, h3kal a and 
the radii R1, R2, R a of three suitable arcs then give 

kl 11 D1 _ hi 11 D1 hi k I D 1 
U ' V : W - -  k 212D 2 • h 212D 2 • h 2k 2D 2 , (24) 

k3 13 D3 h3 13 D3 h3 k3 D3 

where D n = Rn cos en(= (2L cos en)/d,) = the pro- 
jection of the arc radius upon the plane of incidence. 

Since in general several diffractions from symmetric- 
ally equivalent planes contribute arcs on any one ring 
position, one arc can be assigned definite indices 
hikll i from the known form for the ring on which it  
lies, but then all possible alternative indices must be 
taken into account for the other two arcs used, and 
finally the correct one of all the alternative solutions 
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must be determined by comparison (e.g. by § 2.1, 
2.4 or 2.5) of the other observed arc positions with 
those of the corresponding constructed patterns. The 
indices (HKL) of the plane which is normal to the 
orientation axis [UVW] can then be found from 
equation (3) if required. 

Alternatively H : K : L  can be calculated directly. 
Since cos e = (r*k~. r* ~/r* r* H K L I 1  hkl  H K L  , 

we have cos e/dhk~ dHx L = H(ha*2-4-ka*b * cos ~* 

+la*c* cos/~*) 
+K(ha*b* cos ~,* +kb*2~-l~*c * cos ~*) 

+L(ha*c*.cosfl*-t-kb*c* cos c~*+/c *~) . (25) 

Thus (25) can be expressed in the form 

x ~ H + y l K + z i L  = (R~/ ,~ 'L~)D~,  (26) 

and, in conjunction with two further such equations 
corresponding to two other arcs, we obtain 

Yl zl D1 _ xz zl D1 xi Yl Di 
H:K:L---- y~ z, D e xo z~ D~ • x~ y~ D~ . (27) 

Ya za Da xa za Da xa Ya Da 

Equation (25) reduces, for the more symmetrical 
systems, to a simpler expression; e.g. for the hexagonal 
system 

cos e/dh~.d.xL 

= (2/3a").[H(2h+k)+K(h+2k)+Ll{3/(2c~/a~)}],  

and thus for x~, yl, z I the proportional values (2h+k) '  
(h~-2k) and 31/(2c~/a °) may be taken. 

2.4. The estimation of the orientation axis from a re- 
flexion pattern by use of a reciprocal-lattice model 
An approximate but rapid and direct method of 

locating the orientation axis from a reflexion pattern 
which is found to be the same at all azimuths is to 
apply Ewald's reciprocal-lattice construction for the 
diffraction positions, using a three-dimensional model 

of the reciprocal-lattice of the material concerned, in 
the following way. An appropriate model is easily 
constructed, for example by using lengths of threaded 
brass rod carrying nuts at intervals to represent the 
lattice points and clamped parallel, in their correct 
positions, normal to a thin base board. 

Clearly, if there is no identifiable arc in the plane 
of incidence of the reflexion pattern, to indicate the 
type of plane which is normal to the orientation axis, 
the arcs near the plane of incidence provide the next 
most direct indication of the orientation axis direction. 
The angle ¢1 between the radius to an hlkll z arc and 
the plane of incidence is practically the same as the 
angle between the reciprocal-lattice vector [hlk~ll]* 
and the vector [HKL]* which is along the orientation 
axis. The orientation axis is therefore, to a close 
approximation, somewhere on a cone of semi-apical 
angle e~ round the vector [h~k~ll]*. Similarly, if an 
arc of type h,k~l~ lies on a radius at e, to the plane 
of incidence, the axis must also lie on a cone of semi- 
apical angle e~. round one of the reciprocal-lattice rows 
of type [h,k~le]*. I t  is therefore defined as one of the 
intersections of this cone with the first one, the correct 
intersection line being recognised by consideration of 
another arc position (or several), and finally checked 
by considering levels of the whole set of arcs in the 
pattern, using the three-dimensional model in the way 
indicated in § 2.5. Movement of a free rod with one 
end at the origin, so as to comply with the above 
requirements derived from the diffraction pattern, 
thus gives the direction of the orientation axis; its 
indices [HKL]* can then be estimated by inspection 
and a more detailed comparison pattern can be 
constructed, for example as in § 2.1 or 2.5. 

2.5. The method of graphical construction of the dif- 
fraction positions from a reciprocal-lattice projection 
This method of constructing the pattern corre- 

sponding to a suggested orientation is often useful 

031, 121, 2111~ % ~ I F 
301, etc. f ~L~j  " I ~  

I 0211111 / D ' k  2 

~ ~ ~  - -211,  etc. f~__.~_ ~ ._/L " - ~ /  / / ~  

(000~?/ 

Fig. ]2. Construction of diffraction positions from a reciprocal-lattice projection, exemplified for zinc in {1122} orientation wi th 
orientation axis normal to the beam. 
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for its simplicity and its rapidi ty in comparing parti- 
cular diffraction positions with those expected from 
the  trial orientation. I t  consists primarily of construct- 
ing a projection drawing of the reciprocal-lattice upon 
a plane containing the orientation axis, i.e. containing 
the reciprocal-lattice vector r*KZ normal to the 
orientation plane (HKL). When this is done the heights 
of all the reciprocal-lattice points [[Mc/]]* above the 
equator line (normal to. r*~L) of the rotation pat tern 
about r*Kz are immediately apparent and by pro- 
jection normal to r*gL from each lattice point [[Mc/]]*, 
to intersect the circle of radius r*kl round the origin 0 
or a laterally displaced new origin 01, the position of 
the corresponding hlcl diffraction on the hkl ring can 
be marked (Fig. 12). 

Relatively few reciprocal-lattice projections are re- 
quired in practice to cover a large range of possible 
orientations; for example in any type of lattice a 
projection on the a* c* plane can be applied to con- 
struct the diffraction pat tern associated with any 
(hOl) orientation, since r*0z is contained in the a* c* 
plane and can be set vertical to correspond to the 
h0/-diffraction radius vector in the plane of incidence 
of the reflexion pattern. 

~ r , n g  F ' ~  r.HKL .~ L 
. . . .  Side 

L I '~X-~ ' E Beam" 
~ ~ 0  Plan 

_ ~'~ -~ (~ 
~ _  _ ~ Beam 

. . . . . . . .  

Fig. Z3. 

This method is also useful to estimate (Fig. 13) the 
azimuthal angles ~ of rotation about r~KL, from the 
crystal orientation represented by the projection, to 
bring any particular point [[hkl]]* into the Ewald 
plane, shown in section by OE in Fig. 13, the primary 
beam being along 001. This, therefore, enables 
azimuthal crystal orientations to be determined in two- 
degree-orientated (epitaxial) deposits in otherwise 
difficult cases. 

Fig. 14. 

The method can also-be applied (Fig. 14), like the 
methods of § 2.1 and § 2.2, where the orientation axis 
is not normal to the electron beam. 
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